NAME

perf_event_open - set up performance monitoring

SYNOPSIS

#include <linux/perf_event.h>
#include <linux/hw_breakpoint.h>

int perf_event_open(struct perf_event_attr *attr,
 pid_t pid, int cpu, int group_fd,
 unsigned long flags);

Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

Given a list of parameters, perf_event_open() returns a file descriptor, for use in subsequent system calls (read(2), mmap(2), prctl(2), fcntl(2), etc.).

A call to perf_event_open() creates a file descriptor that allows measuring performance information. Each file descriptor corresponds to one event that is measured; these can be grouped together to measure multiple events simultaneously.

Events can be enabled and disabled in two ways: via ioctl(2) and via prctl(2). When an event is disabled it does not count or generate overflows but does continue to exist and maintain its count value.

Events come in two flavors: counting and sampled. A counting event is one that is used for counting the aggregate number of events that occur. In general, counting event results are gathered with a read(2) call. A sampling event periodically writes measurements to a buffer that can then be accessed via mmap(2).

Arguments

The pid and cpu arguments allow specifying which process and CPU to monitor:

pid == 0 and cpu == -1

This measures the calling process/thread on any CPU.

pid == 0 and cpu >= 0

This measures the calling process/thread only when running on the specified CPU.

pid > 0 and cpu == -1

This measures the specified process/thread on any CPU.

pid > 0 and cpu >= 0

This measures the specified process/thread only when running on the specified CPU.

pid == -1 and cpu >= 0

This measures all processes/threads on the specified CPU. This requires CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN capability or a /proc/sys/kernel/perf_event_paranoid value of less than 1.

pid == -1 and cpu == -1

This setting is invalid and will return an error.

When pid is greater than zero, permission to perform this system call is governed by CAP_PERFMON (since Linux 5.9) and a ptrace access mode PTRACE_MODE_READ_REALCREDS check on older Linux versions; see ptrace(2).

The group_fd argument allows event groups to be created. An event group has one event which is the group leader. The leader is created first, with group_fd = -1. The rest of the group members are created with subsequent perf_event_open() calls with group_fd being set to the file descriptor of the group leader. (A single event on its own is created with group_fd = -1 and is considered to be a group with only 1 member.) An event group is scheduled onto the CPU as a unit: it will be put onto the CPU only if all of the events in the group can be put onto the CPU. This means that the values of the member events can be meaningfully compared—added, divided (to get ratios), and so on—with each other, since they have counted events for the same set of executed instructions.

The flags argument is formed by ORing together zero or more of the following values:

PERF_FLAG_FD_CLOEXEC (since Linux 3.14)

This flag enables the close-on-exec flag for the created event file descriptor, so that the file descriptor is automatically closed on execve(2). Setting the close-on-exec flags at creation time, rather than later with fcntl(2), avoids potential race conditions where the calling thread invokes perf_event_open() and fcntl(2) at the same time as another thread calls fork(2) then execve(2).

PERF_FLAG_FD_NO_GROUP

This flag tells the event to ignore the group_fd parameter except for the purpose of setting up output redirection using the PERF_FLAG_FD_OUTPUT flag.

PERF_FLAG_FD_OUTPUT (broken since Linux 2.6.35)

This flag re-routes the event's sampled output to instead be included in the mmap buffer of the event specified by group_fd.

PERF_FLAG_PID_CGROUP (since Linux 2.6.39)

This flag activates per-container system-wide monitoring. A container is an abstraction that isolates a set of resources for finer-grained control (CPUs, memory, etc.). In this mode, the event is measured only if the thread running on the monitored CPU belongs to the designated container (cgroup). The cgroup is identified by passing a file descriptor opened on its directory in the cgroupfs filesystem. For instance, if the cgroup to monitor is called test, then a file descriptor opened on /dev/cgroup/test (assuming cgroupfs is mounted on /dev/cgroup) must be passed as the pid parameter. cgroup monitoring is available only for system-wide events and may therefore require extra permissions.

The perf_event_attr structure provides detailed configuration information for the event being created.

struct perf_event_attr {
    __u32 type;                 /* Type of event */
    __u32 size;                 /* Size of attribute structure */
    __u64 config;               /* Type-specific configuration */

    union {
        __u64 sample_period;    /* Period of sampling */
        __u64 sample_freq;      /* Frequency of sampling */
    };

    __u64 sample_type;  /* Specifies values included in sample */
    __u64 read_format;  /* Specifies values returned in read */

    __u64 disabled       : 1,   /* off by default */
          inherit        : 1,   /* children inherit it */
          pinned         : 1,   /* must always be on PMU */
          exclusive      : 1,   /* only group on PMU */
          exclude_user   : 1,   /* don't count user */
          exclude_kernel : 1,   /* don't count kernel */
          exclude_hv     : 1,   /* don't count hypervisor */
          exclude_idle   : 1,   /* don't count when idle */
          mmap           : 1,   /* include mmap data */
          comm           : 1,   /* include comm data */
          freq           : 1,   /* use freq, not period */
          inherit_stat   : 1,   /* per task counts */
          enable_on_exec : 1,   /* next exec enables */
          task           : 1,   /* trace fork/exit */
          watermark      : 1,   /* wakeup_watermark */
          precise_ip     : 2,   /* skid constraint */
          mmap_data      : 1,   /* non-exec mmap data */
          sample_id_all  : 1,   /* sample_type all events */
          exclude_host   : 1,   /* don't count in host */
          exclude_guest  : 1,   /* don't count in guest */
          exclude_callchain_kernel : 1,
                                /* exclude kernel callchains */
          exclude_callchain_user   : 1,
                                /* exclude user callchains */
          mmap2          :  1,  /* include mmap with inode data */
          comm_exec      :  1,  /* flag comm events that are
                                   due to exec */
          use_clockid    :  1,  /* use clockid for time fields */
          context_switch :  1,  /* context switch data */
          write_backward :  1,  /* Write ring buffer from end
                                   to beginning */
          namespaces     :  1,  /* include namespaces data */
          ksymbol        :  1,  /* include ksymbol events */
          bpf_event      :  1,  /* include bpf events */
          aux_output     :  1,  /* generate AUX records
                                   instead of events */
          cgroup         :  1,  /* include cgroup events */
          text_poke      :  1,  /* include text poke events */

          __reserved_1   : 30;

    union {
        __u32 wakeup_events;    /* wakeup every n events */
        __u32 wakeup_watermark; /* bytes before wakeup */
    };

    __u32     bp_type;          /* breakpoint type */

    union {
        __u64 bp_addr;          /* breakpoint address */
        __u64 kprobe_func;      /* for perf_kprobe */
        __u64 uprobe_path;      /* for perf_uprobe */
        __u64 config1;          /* extension of config */
    };

    union {
        __u64 bp_len;           /* breakpoint length */
        __u64 kprobe_addr;      /* with kprobe_func == NULL */
        __u64 probe_offset;     /* for perf_[k,u]probe */
        __u64 config2;          /* extension of config1 */
    };
    __u64 branch_sample_type;   /* enum perf_branch_sample_type */
    __u64 sample_regs_user;     /* user regs to dump on samples */
    __u32 sample_stack_user;    /* size of stack to dump on
                                   samples */
    __s32 clockid;              /* clock to use for time fields */
    __u64 sample_regs_intr;     /* regs to dump on samples */
    __u32 aux_watermark;        /* aux bytes before wakeup */
    __u16 sample_max_stack;     /* max frames in callchain */
    __u16 __reserved_2;         /* align to u64 */

};

The fields of the perf_event_attr structure are described in more detail below:

type

This field specifies the overall event type. It has one of the following values:

PERF_TYPE_HARDWARE

This indicates one of the "generalized" hardware events provided by the kernel. See the config field definition for more details.

PERF_TYPE_SOFTWARE

This indicates one of the software-defined events provided by the kernel (even if no hardware support is available).

PERF_TYPE_TRACEPOINT

This indicates a tracepoint provided by the kernel tracepoint infrastructure.

PERF_TYPE_HW_CACHE

This indicates a hardware cache event. This has a special encoding, described in the config field definition.

PERF_TYPE_RAW

This indicates a "raw" implementation-specific event in the config field.

PERF_TYPE_BREAKPOINT (since Linux 2.6.33)

This indicates a hardware breakpoint as provided by the CPU. Breakpoints can be read/write accesses to an address as well as execution of an instruction address.

dynamic PMU

Since Linux 2.6.38, perf_event_open() can support multiple PMUs. To enable this, a value exported by the kernel can be used in the type field to indicate which PMU to use. The value to use can be found in the sysfs filesystem: there is a subdirectory per PMU instance under /sys/bus/event_source/devices. In each subdirectory there is a type file whose content is an integer that can be used in the type field. For instance, /sys/bus/event_source/devices/cpu/type contains the value for the core CPU PMU, which is usually 4.

kprobe and uprobe (since Linux 4.17)

These two dynamic PMUs create a kprobe/uprobe and attach it to the file descriptor generated by perf_event_open. The kprobe/uprobe will be destroyed on the destruction of the file descriptor. See fields kprobe_func, uprobe_path, kprobe_addr, and probe_offset for more details.

size

The size of the perf_event_attr structure for forward/backward compatibility. Set this using sizeof(struct perf_event_attr) to allow the kernel to see the struct size at the time of compilation.

The related define PERF_ATTR_SIZE_VER0 is set to 64; this was the size of the first published struct. PERF_ATTR_SIZE_VER1 is 72, corresponding to the addition of breakpoints in Linux 2.6.33. PERF_ATTR_SIZE_VER2 is 80 corresponding to the addition of branch sampling in Linux 3.4. PERF_ATTR_SIZE_VER3 is 96 corresponding to the addition of sample_regs_user and sample_stack_user in Linux 3.7. PERF_ATTR_SIZE_VER4 is 104 corresponding to the addition of sample_regs_intr in Linux 3.19. PERF_ATTR_SIZE_VER5 is 112 corresponding to the addition of aux_watermark in Linux 4.1.

config

This specifies which event you want, in conjunction with the type field. The config1 and config2 fields are also taken into account in cases where 64 bits is not enough to fully specify the event. The encoding of these fields are event dependent.

There are various ways to set the config field that are dependent on the value of the previously described type field. What follows are various possible settings for config separated out by type.

If type is PERF_TYPE_HARDWARE, we are measuring one of the generalized hardware CPU events. Not all of these are available on all platforms. Set config to one of the following:

PERF_COUNT_HW_CPU_CYCLES

Total cycles. Be wary of what happens during CPU frequency scaling.

PERF_COUNT_HW_INSTRUCTIONS

Retired instructions. Be careful, these can be affected by various issues, most notably hardware interrupt counts.

PERF_COUNT_HW_CACHE_REFERENCES

Cache accesses. Usually this indicates Last Level Cache accesses but this may vary depending on your CPU. This may include prefetches and coherency messages; again this depends on the design of your CPU.

PERF_COUNT_HW_CACHE_MISSES

Cache misses. Usually this indicates Last Level Cache misses; this is intended to be used in conjunction with the PERF_COUNT_HW_CACHE_REFERENCES event to calculate cache miss rates.

PERF_COUNT_HW_BRANCH_INSTRUCTIONS

Retired branch instructions. Prior to Linux 2.6.35, this used the wrong event on AMD processors.

PERF_COUNT_HW_BRANCH_MISSES

Mispredicted branch instructions.

PERF_COUNT_HW_BUS_CYCLES

Bus cycles, which can be different from total cycles.

PERF_COUNT_HW_STALLED_CYCLES_FRONTEND (since Linux 3.0)

Stalled cycles during issue.

PERF_COUNT_HW_STALLED_CYCLES_BACKEND (since Linux 3.0)

Stalled cycles during retirement.

PERF_COUNT_HW_REF_CPU_CYCLES (since Linux 3.3)

Total cycles; not affected by CPU frequency scaling.

If type is PERF_TYPE_SOFTWARE, we are measuring software events provided by the kernel. Set config to one of the following:

PERF_COUNT_SW_CPU_CLOCK

This reports the CPU clock, a high-resolution per-CPU timer.

PERF_COUNT_SW_TASK_CLOCK

This reports a clock count specific to the task that is running.

PERF_COUNT_SW_PAGE_FAULTS

This reports the number of page faults.

PERF_COUNT_SW_CONTEXT_SWITCHES

This counts context switches. Until Linux 2.6.34, these were all reported as user-space events, after that they are reported as happening in the kernel.

PERF_COUNT_SW_CPU_MIGRATIONS

This reports the number of times the process has migrated to a new CPU.

PERF_COUNT_SW_PAGE_FAULTS_MIN

This counts the number of minor page faults. These did not require disk I/O to handle.

PERF_COUNT_SW_PAGE_FAULTS_MAJ

This counts the number of major page faults. These required disk I/O to handle.

PERF_COUNT_SW_ALIGNMENT_FAULTS (since Linux 2.6.33)

This counts the number of alignment faults. These happen when unaligned memory accesses happen; the kernel can handle these but it reduces performance. This happens only on some architectures (never on x86).

PERF_COUNT_SW_EMULATION_FAULTS (since Linux 2.6.33)

This counts the number of emulation faults. The kernel sometimes traps on unimplemented instructions and emulates them for user space. This can negatively impact performance.

PERF_COUNT_SW_DUMMY (since Linux 3.12)

This is a placeholder event that counts nothing. Informational sample record types such as mmap or comm must be associated with an active event. This dummy event allows gathering such records without requiring a counting event.

If type is PERF_TYPE_TRACEPOINT, then we are measuring kernel tracepoints. The value to use in config can be obtained from under debugfs tracing/events/*/*/id if ftrace is enabled in the kernel.

If type is PERF_TYPE_HW_CACHE, then we are measuring a hardware CPU cache event. To calculate the appropriate config value, use the following equation:

config = (perf_hw_cache_id) |
         (perf_hw_cache_op_id << 8) |
         (perf_hw_cache_op_result_id << 16);

where perf_hw_cache_id is one of:

PERF_COUNT_HW_CACHE_L1D

for measuring Level 1 Data Cache

PERF_COUNT_HW_CACHE_L1I

for measuring Level 1 Instruction Cache

PERF_COUNT_HW_CACHE_LL

for measuring Last-Level Cache

PERF_COUNT_HW_CACHE_DTLB

for measuring the Data TLB

PERF_COUNT_HW_CACHE_ITLB

for measuring the Instruction TLB

PERF_COUNT_HW_CACHE_BPU

for measuring the branch prediction unit

PERF_COUNT_HW_CACHE_NODE (since Linux 3.1)

for measuring local memory accesses

and perf_hw_cache_op_id is one of:

PERF_COUNT_HW_CACHE_OP_READ

for read accesses

PERF_COUNT_HW_CACHE_OP_WRITE

for write accesses

PERF_COUNT_HW_CACHE_OP_PREFETCH

for prefetch accesses

and perf_hw_cache_op_result_id is one of:

PERF_COUNT_HW_CACHE_RESULT_ACCESS

to measure accesses

PERF_COUNT_HW_CACHE_RESULT_MISS

to measure misses

If type is PERF_TYPE_RAW, then a custom "raw" config value is needed. Most CPUs support events that are not covered by the "generalized" events. These are implementation defined; see your CPU manual (for example the Intel Volume 3B documentation or the AMD BIOS and Kernel Developer Guide). The libpfm4 library can be used to translate from the name in the architectural manuals to the raw hex value perf_event_open() expects in this field.

If type is PERF_TYPE_BREAKPOINT, then leave config set to zero. Its parameters are set in other places.

If type is kprobe or uprobe, set retprobe (bit 0 of config, see /sys/bus/event_source/devices/[k,u]probe/format/retprobe) for kretprobe/uretprobe. See fields kprobe_func, uprobe_path, kprobe_addr, and probe_offset for more details.

kprobe_func, uprobe_path, kprobe_addr, and probe_offset

These fields describe the kprobe/uprobe for dynamic PMUs kprobe and uprobe. For kprobe: use kprobe_func and probe_offset, or use kprobe_addr and leave kprobe_func as NULL. For uprobe: use uprobe_path and probe_offset.

sample_period, sample_freq

A "sampling" event is one that generates an overflow notification every N events, where N is given by sample_period. A sampling event has sample_period > 0. When an overflow occurs, requested data is recorded in the mmap buffer. The sample_type field controls what data is recorded on each overflow.

sample_freq can be used if you wish to use frequency rather than period. In this case, you set the freq flag. The kernel will adjust the sampling period to try and achieve the desired rate. The rate of adjustment is a timer tick.

sample_type

The various bits in this field specify which values to include in the sample. They will be recorded in a ring-buffer, which is available to user space using mmap(2). The order in which the values are saved in the sample are documented in the MMAP Layout subsection below; it is not the enum perf_event_sample_format order.

PERF_SAMPLE_IP

Records instruction pointer.

PERF_SAMPLE_TID

Records the process and thread IDs.

PERF_SAMPLE_TIME

Records a timestamp.

PERF_SAMPLE_ADDR

Records an address, if applicable.

PERF_SAMPLE_READ

Record counter values for all events in a group, not just the group leader.

PERF_SAMPLE_CALLCHAIN

Records the callchain (stack backtrace).

PERF_SAMPLE_ID

Records a unique ID for the opened event's group leader.

PERF_SAMPLE_CPU

Records CPU number.

PERF_SAMPLE_PERIOD

Records the current sampling period.

PERF_SAMPLE_STREAM_ID

Records a unique ID for the opened event. Unlike PERF_SAMPLE_ID the actual ID is returned, not the group leader. This ID is the same as the one returned by PERF_FORMAT_ID.

PERF_SAMPLE_RAW

Records additional data, if applicable. Usually returned by tracepoint events.

PERF_SAMPLE_BRANCH_STACK (since Linux 3.4)

This provides a record of recent branches, as provided by CPU branch sampling hardware (such as Intel Last Branch Record). Not all hardware supports this feature.

See the branch_sample_type field for how to filter which branches are reported.

PERF_SAMPLE_REGS_USER (since Linux 3.7)

Records the current user-level CPU register state (the values in the process before the kernel was called).

PERF_SAMPLE_STACK_USER (since Linux 3.7)

Records the user level stack, allowing stack unwinding.

PERF_SAMPLE_WEIGHT (since Linux 3.10)

Records a hardware provided weight value that expresses how costly the sampled event was. This allows the hardware to highlight expensive events in a profile.

PERF_SAMPLE_DATA_SRC (since Linux 3.10)

Records the data source: where in the memory hierarchy the data associated with the sampled instruction came from. This is available only if the underlying hardware supports this feature.

PERF_SAMPLE_IDENTIFIER (since Linux 3.12)

Places the SAMPLE_ID value in a fixed position in the record, either at the beginning (for sample events) or at the end (if a non-sample event).

This was necessary because a sample stream may have records from various different event sources with different sample_type settings. Parsing the event stream properly was not possible because the format of the record was needed to find SAMPLE_ID, but the format could not be found without knowing what event the sample belonged to (causing a circular dependency).

The PERF_SAMPLE_IDENTIFIER setting makes the event stream always parsable by putting SAMPLE_ID in a fixed location, even though it means having duplicate SAMPLE_ID values in records.

PERF_SAMPLE_TRANSACTION (since Linux 3.13)

Records reasons for transactional memory abort events (for example, from Intel TSX transactional memory support).

The precise_ip setting must be greater than 0 and a transactional memory abort event must be measured or no values will be recorded. Also note that some perf_event measurements, such as sampled cycle counting, may cause extraneous aborts (by causing an interrupt during a transaction).

PERF_SAMPLE_REGS_INTR (since Linux 3.19)

Records a subset of the current CPU register state as specified by sample_regs_intr. Unlike PERF_SAMPLE_REGS_USER the register values will return kernel register state if the overflow happened while kernel code is running. If the CPU supports hardware sampling of register state (i.e., PEBS on Intel x86) and precise_ip is set higher than zero then the register values returned are those captured by hardware at the time of the sampled instruction's retirement.

PERF_SAMPLE_PHYS_ADDR (since Linux 4.13)

Records physical address of data like in PERF_SAMPLE_ADDR.

PERF_SAMPLE_CGROUP (since Linux 5.7)

Records (perf_event) cgroup ID of the process. This corresponds to the id field in the PERF_RECORD_CGROUP event.

read_format

This field specifies the format of the data returned by read(2) on a perf_event_open() file descriptor.

PERF_FORMAT_TOTAL_TIME_ENABLED

Adds the 64-bit time_enabled field. This can be used to calculate estimated totals if the PMU is overcommitted and multiplexing is happening.

PERF_FORMAT_TOTAL_TIME_RUNNING

Adds the 64-bit time_running field. This can be used to calculate estimated totals if the PMU is overcommitted and multiplexing is happening.

PERF_FORMAT_ID

Adds a 64-bit unique value that corresponds to the event group.

PERF_FORMAT_GROUP

Allows all counter values in an event group to be read with one read.

disabled

The disabled bit specifies whether the counter starts out disabled or enabled. If disabled, the event can later be enabled by ioctl(2), prctl(2), or enable_on_exec.

When creating an event group, typically the group leader is initialized with disabled set to 1 and any child events are initialized with disabled set to 0. Despite disabled being 0, the child events will not start until the group leader is enabled.

inherit

The inherit bit specifies that this counter should count events of child tasks as well as the task specified. This applies only to new children, not to any existing children at the time the counter is created (nor to any new children of existing children).

Inherit does not work for some combinations of read_format values, such as PERF_FORMAT_GROUP.

pinned

The pinned bit specifies that the counter should always be on the CPU if at all possible. It applies only to hardware counters and only to group leaders. If a pinned counter cannot be put onto the CPU (e.g., because there are not enough hardware counters or because of a conflict with some other event), then the counter goes into an 'error' state, where reads return end-of-file (i.e., read(2) returns 0) until the counter is subsequently enabled or disabled.

exclusive

The exclusive bit specifies that when this counter's group is on the CPU, it should be the only group using the CPU's counters. In the future this may allow monitoring programs to support PMU features that need to run alone so that they do not disrupt other hardware counters.

Note that many unexpected situations may prevent events with the exclusive bit set from ever running. This includes any users running a system-wide measurement as well as any kernel use of the performance counters (including the commonly enabled NMI Watchdog Timer interface).

exclude_user

If this bit is set, the count excludes events that happen in user space.

exclude_kernel

If this bit is set, the count excludes events that happen in kernel space.

exclude_hv

If this bit is set, the count excludes events that happen in the hypervisor. This is mainly for PMUs that have built-in support for handling this (such as POWER). Extra support is needed for handling hypervisor measurements on most machines.

exclude_idle

If set, don't count when the CPU is running the idle task. While you can currently enable this for any event type, it is ignored for all but software events.

mmap

The mmap bit enables generation of PERF_RECORD_MMAP samples for every mmap(2) call that has PROT_EXEC set. This allows tools to notice new executable code being mapped into a program (dynamic shared libraries for example) so that addresses can be mapped back to the original code.

comm

The comm bit enables tracking of process command name as modified by the exec(2) and prctl(PR_SET_NAME) system calls as well as writing to /proc/self/comm. If the comm_exec flag is also successfully set (possible since Linux 3.16), then the misc flag PERF_RECORD_MISC_COMM_EXEC can be used to differentiate the exec(2) case from the others.

freq

If this bit is set, then sample_frequency not sample_period is used when setting up the sampling interval.

inherit_stat

This bit enables saving of event counts on context switch for inherited tasks. This is meaningful only if the inherit field is set.

enable_on_exec

If this bit is set, a counter is automatically enabled after a call to exec(2).

task

If this bit is set, then fork/exit notifications are included in the ring buffer.

watermark

If set, have an overflow notification happen when we cross the wakeup_watermark boundary. Otherwise, overflow notifications happen after wakeup_events samples.

precise_ip (since Linux 2.6.35)

This controls the amount of skid. Skid is how many instructions execute between an event of interest happening and the kernel being able to stop and record the event. Smaller skid is better and allows more accurate reporting of which events correspond to which instructions, but hardware is often limited with how small this can be.

The possible values of this field are the following:

  1. SAMPLE_IP can have arbitrary skid.

  2. SAMPLE_IP must have constant skid.

  3. SAMPLE_IP requested to have 0 skid.

  4. SAMPLE_IP must have 0 skid. See also the description of PERF_RECORD_MISC_EXACT_IP.

mmap_data (since Linux 2.6.36)

This is the counterpart of the mmap field. This enables generation of PERF_RECORD_MMAP samples for mmap(2) calls that do not have PROT_EXEC set (for example data and SysV shared memory).

sample_id_all (since Linux 2.6.38)

If set, then TID, TIME, ID, STREAM_ID, and CPU can additionally be included in non-PERF_RECORD_SAMPLEs if the corresponding sample_type is selected.

If PERF_SAMPLE_IDENTIFIER is specified, then an additional ID value is included as the last value to ease parsing the record stream. This may lead to the id value appearing twice.

The layout is described by this pseudo-structure:

struct sample_id {
    { u32 pid, tid; }   /* if PERF_SAMPLE_TID set */
    { u64 time;     }   /* if PERF_SAMPLE_TIME set */
    { u64 id;       }   /* if PERF_SAMPLE_ID set */
    { u64 stream_id;}   /* if PERF_SAMPLE_STREAM_ID set  */
    { u32 cpu, res; }   /* if PERF_SAMPLE_CPU set */
    { u64 id;       }   /* if PERF_SAMPLE_IDENTIFIER set */
};
exclude_host (since Linux 3.2)

When conducting measurements that include processes running VM instances (i.e., have executed a KVM_RUN ioctl(2)), only measure events happening inside a guest instance. This is only meaningful outside the guests; this setting does not change counts gathered inside of a guest. Currently, this functionality is x86 only.

exclude_guest (since Linux 3.2)

When conducting measurements that include processes running VM instances (i.e., have executed a KVM_RUN ioctl(2)), do not measure events happening inside guest instances. This is only meaningful outside the guests; this setting does not change counts gathered inside of a guest. Currently, this functionality is x86 only.

exclude_callchain_kernel (since Linux 3.7)

Do not include kernel callchains.

exclude_callchain_user (since Linux 3.7)

Do not include user callchains.

mmap2 (since Linux 3.16)

Generate an extended executable mmap record that contains enough additional information to uniquely identify shared mappings. The mmap flag must also be set for this to work.

comm_exec (since Linux 3.16)

This is purely a feature-detection flag, it does not change kernel behavior. If this flag can successfully be set, then, when comm is enabled, the PERF_RECORD_MISC_COMM_EXEC flag will be set in the misc field of a comm record header if the rename event being reported was caused by a call to exec(2). This allows tools to distinguish between the various types of process renaming.

use_clockid (since Linux 4.1)

This allows selecting which internal Linux clock to use when generating timestamps via the clockid field. This can make it easier to correlate perf sample times with timestamps generated by other tools.

context_switch (since Linux 4.3)

This enables the generation of PERF_RECORD_SWITCH records when a context switch occurs. It also enables the generation of PERF_RECORD_SWITCH_CPU_WIDE records when sampling in CPU-wide mode. This functionality is in addition to existing tracepoint and software events for measuring context switches. The advantage of this method is that it will give full information even with strict perf_event_paranoid settings.

write_backward (since Linux 4.6)

This causes the ring buffer to be written from the end to the beginning. This is to support reading from overwritable ring buffer.

namespaces (since Linux 4.11)

This enables the generation of PERF_RECORD_NAMESPACES records when a task enters a new namespace. Each namespace has a combination of device and inode numbers.

ksymbol (since Linux 5.0)

This enables the generation of PERF_RECORD_KSYMBOL records when new kernel symbols are registered or unregistered. This is analyzing dynamic kernel functions like eBPF.

bpf_event (since Linux 5.0)

This enables the generation of PERF_RECORD_BPF_EVENT records when an eBPF program is loaded or unloaded.

auxevent (since Linux 5.4)

This allows normal (non-AUX) events to generate data for AUX events if the hardware supports it.

cgroup (since Linux 5.7)

This enables the generation of PERF_RECORD_CGROUP records when a new cgroup is created (and activated).

text_poke (since Linux 5.8)

This enables the generation of PERF_RECORD_TEXT_POKE records when there's a changes to the kernel text (i.e., self-modifying code).

wakeup_events, wakeup_watermark

This union sets how many samples (wakeup_events) or bytes (wakeup_watermark) happen before an overflow notification happens. Which one is used is selected by the watermark bit flag.

wakeup_events counts only PERF_RECORD_SAMPLE record types. To receive overflow notification for all PERF_RECORD types choose watermark and set wakeup_watermark to 1.

Prior to Linux 3.0, setting wakeup_events to 0 resulted in no overflow notifications; more recent kernels treat 0 the same as 1.

bp_type (since Linux 2.6.33)

This chooses the breakpoint type. It is one of:

HW_BREAKPOINT_EMPTY

No breakpoint.

HW_BREAKPOINT_R

Count when we read the memory location.

HW_BREAKPOINT_W

Count when we write the memory location.

HW_BREAKPOINT_RW

Count when we read or write the memory location.

HW_BREAKPOINT_X

Count when we execute code at the memory location.

The values can be combined via a bitwise or, but the combination of HW_BREAKPOINT_R or HW_BREAKPOINT_W with HW_BREAKPOINT_X is not allowed.

bp_addr (since Linux 2.6.33)

This is the address of the breakpoint. For execution breakpoints, this is the memory address of the instruction of interest; for read and write breakpoints, it is the memory address of the memory location of interest.

config1 (since Linux 2.6.39)

config1 is used for setting events that need an extra register or otherwise do not fit in the regular config field. Raw OFFCORE_EVENTS on Nehalem/Westmere/SandyBridge use this field on Linux 3.3 and later kernels.

bp_len (since Linux 2.6.33)

bp_len is the length of the breakpoint being measured if type is PERF_TYPE_BREAKPOINT. Options are HW_BREAKPOINT_LEN_1, HW_BREAKPOINT_LEN_2, HW_BREAKPOINT_LEN_4, and HW_BREAKPOINT_LEN_8. For an execution breakpoint, set this to sizeof(long).

config2 (since Linux 2.6.39)

config2 is a further extension of the config1 field.

branch_sample_type (since Linux 3.4)

If PERF_SAMPLE_BRANCH_STACK is enabled, then this specifies what branches to include in the branch record.

The first part of the value is the privilege level, which is a combination of one of the values listed below. If the user does not set privilege level explicitly, the kernel will use the event's privilege level. Event and branch privilege levels do not have to match.

PERF_SAMPLE_BRANCH_USER

Branch target is in user space.

PERF_SAMPLE_BRANCH_KERNEL

Branch target is in kernel space.

PERF_SAMPLE_BRANCH_HV

Branch target is in hypervisor.

PERF_SAMPLE_BRANCH_PLM_ALL

A convenience value that is the three preceding values ORed together.

In addition to the privilege value, at least one or more of the following bits must be set.

PERF_SAMPLE_BRANCH_ANY

Any branch type.

PERF_SAMPLE_BRANCH_ANY_CALL

Any call branch (includes direct calls, indirect calls, and far jumps).

PERF_SAMPLE_BRANCH_IND_CALL

Indirect calls.

PERF_SAMPLE_BRANCH_CALL (since Linux 4.4)

Direct calls.

PERF_SAMPLE_BRANCH_ANY_RETURN

Any return branch.

PERF_SAMPLE_BRANCH_IND_JUMP (since Linux 4.2)

Indirect jumps.

PERF_SAMPLE_BRANCH_COND (since Linux 3.16)

Conditional branches.

PERF_SAMPLE_BRANCH_ABORT_TX (since Linux 3.11)

Transactional memory aborts.

PERF_SAMPLE_BRANCH_IN_TX (since Linux 3.11)

Branch in transactional memory transaction.

PERF_SAMPLE_BRANCH_NO_TX (since Linux 3.11)

Branch not in transactional memory transaction. PERF_SAMPLE_BRANCH_CALL_STACK (since Linux 4.1) Branch is part of a hardware-generated call stack. This requires hardware support, currently only found on Intel x86 Haswell or newer.

sample_regs_user (since Linux 3.7)

This bit mask defines the set of user CPU registers to dump on samples. The layout of the register mask is architecture-specific and is described in the kernel header file arch/ARCH/include/uapi/asm/perf_regs.h.

sample_stack_user (since Linux 3.7)

This defines the size of the user stack to dump if PERF_SAMPLE_STACK_USER is specified.

clockid (since Linux 4.1)

If use_clockid is set, then this field selects which internal Linux timer to use for timestamps. The available timers are defined in linux/time.h, with CLOCK_MONOTONIC, CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, and CLOCK_TAI currently supported.

aux_watermark (since Linux 4.1)

This specifies how much data is required to trigger a PERF_RECORD_AUX sample.

sample_max_stack (since Linux 4.8)

When sample_type includes PERF_SAMPLE_CALLCHAIN, this field specifies how many stack frames to report when generating the callchain.

Reading results

Once a perf_event_open() file descriptor has been opened, the values of the events can be read from the file descriptor. The values that are there are specified by the read_format field in the attr structure at open time.

If you attempt to read into a buffer that is not big enough to hold the data, the error ENOSPC results.

Here is the layout of the data returned by a read:

The values read are as follows:

nr

The number of events in this file descriptor. Available only if PERF_FORMAT_GROUP was specified.

time_enabled, time_running

Total time the event was enabled and running. Normally these values are the same. Multiplexing happens if the number of events is more than the number of available PMU counter slots. In that case the events run only part of the time and the time_enabled and time running values can be used to scale an estimated value for the count.

value

An unsigned 64-bit value containing the counter result.

id

A globally unique value for this particular event; only present if PERF_FORMAT_ID was specified in read_format.

MMAP layout

When using perf_event_open() in sampled mode, asynchronous events (like counter overflow or PROT_EXEC mmap tracking) are logged into a ring-buffer. This ring-buffer is created and accessed through mmap(2).

The mmap size should be 1+2^n pages, where the first page is a metadata page (struct perf_event_mmap_page) that contains various bits of information such as where the ring-buffer head is.

Before kernel 2.6.39, there is a bug that means you must allocate an mmap ring buffer when sampling even if you do not plan to access it.

The structure of the first metadata mmap page is as follows:

struct perf_event_mmap_page {
    __u32 version;        /* version number of this structure */
    __u32 compat_version; /* lowest version this is compat with */
    __u32 lock;           /* seqlock for synchronization */
    __u32 index;          /* hardware counter identifier */
    __s64 offset;         /* add to hardware counter value */
    __u64 time_enabled;   /* time event active */
    __u64 time_running;   /* time event on CPU */
    union {
        __u64   capabilities;
        struct {
            __u64 cap_usr_time / cap_usr_rdpmc / cap_bit0 : 1,
                  cap_bit0_is_deprecated : 1,
                  cap_user_rdpmc         : 1,
                  cap_user_time          : 1,
                  cap_user_time_zero     : 1,
        };
    };
    __u16 pmc_width;
    __u16 time_shift;
    __u32 time_mult;
    __u64 time_offset;
    __u64 __reserved[120];   /* Pad to 1 k */
    __u64 data_head;         /* head in the data section */
    __u64 data_tail;         /* user-space written tail */
    __u64 data_offset;       /* where the buffer starts */
    __u64 data_size;         /* data buffer size */
    __u64 aux_head;
    __u64 aux_tail;
    __u64 aux_offset;
    __u64 aux_size;

}

The following list describes the fields in the perf_event_mmap_page structure in more detail:

version

Version number of this structure.

compat_version

The lowest version this is compatible with.

lock

A seqlock for synchronization.

index

A unique hardware counter identifier.

offset

When using rdpmc for reads this offset value must be added to the one returned by rdpmc to get the current total event count.

time_enabled

Time the event was active.

time_running

Time the event was running.

cap_usr_time / cap_usr_rdpmc / cap_bit0 (since Linux 3.4)

There was a bug in the definition of cap_usr_time and cap_usr_rdpmc from Linux 3.4 until Linux 3.11. Both bits were defined to point to the same location, so it was impossible to know if cap_usr_time or cap_usr_rdpmc were actually set.

Starting with Linux 3.12, these are renamed to cap_bit0 and you should use the cap_user_time and cap_user_rdpmc fields instead.

cap_bit0_is_deprecated (since Linux 3.12)

If set, this bit indicates that the kernel supports the properly separated cap_user_time and cap_user_rdpmc bits.

If not-set, it indicates an older kernel where cap_usr_time and cap_usr_rdpmc map to the same bit and thus both features should be used with caution.

cap_user_rdpmc (since Linux 3.12)

If the hardware supports user-space read of performance counters without syscall (this is the "rdpmc" instruction on x86), then the following code can be used to do a read:

u32 seq, time_mult, time_shift, idx, width;
u64 count, enabled, running;
u64 cyc, time_offset;

do {
    seq = pc->lock;
    barrier();
    enabled = pc->time_enabled;
    running = pc->time_running;

    if (pc->cap_usr_time && enabled != running) {
        cyc = rdtsc();
        time_offset = pc->time_offset;
        time_mult   = pc->time_mult;
        time_shift  = pc->time_shift;
    }

    idx = pc->index;
    count = pc->offset;

    if (pc->cap_usr_rdpmc && idx) {
        width = pc->pmc_width;
        count += rdpmc(idx - 1);
    }

    barrier();
} while (pc->lock != seq);
cap_user_time (since Linux 3.12)

This bit indicates the hardware has a constant, nonstop timestamp counter (TSC on x86).

cap_user_time_zero (since Linux 3.12)

Indicates the presence of time_zero which allows mapping timestamp values to the hardware clock.

pmc_width

If cap_usr_rdpmc, this field provides the bit-width of the value read using the rdpmc or equivalent instruction. This can be used to sign extend the result like:

pmc <<= 64 - pmc_width;
pmc >>= 64 - pmc_width; // signed shift right
count += pmc;
time_shift, time_mult, time_offset

If cap_usr_time, these fields can be used to compute the time delta since time_enabled (in nanoseconds) using rdtsc or similar.

u64 quot, rem;
u64 delta;

quot  = cyc >> time_shift;
rem   = cyc & (((u64)1 << time_shift) - 1);
delta = time_offset + quot * time_mult +
        ((rem * time_mult) >> time_shift);

Where time_offset, time_mult, time_shift, and cyc are read in the seqcount loop described above. This delta can then be added to enabled and possible running (if idx), improving the scaling:

enabled += delta;
if (idx)
    running += delta;
quot  = count / running;
rem   = count % running;
count = quot * enabled + (rem * enabled) / running;
time_zero (since Linux 3.12)

If cap_usr_time_zero is set, then the hardware clock (the TSC timestamp counter on x86) can be calculated from the time_zero, time_mult, and time_shift values:

time = timestamp - time_zero;
quot = time / time_mult;
rem  = time % time_mult;
cyc  = (quot << time_shift) + (rem << time_shift) / time_mult;

And vice versa:

quot = cyc >> time_shift;
rem  = cyc & (((u64)1 << time_shift) - 1);
timestamp = time_zero + quot * time_mult +
            ((rem * time_mult) >> time_shift);
data_head

This points to the head of the data section. The value continuously increases, it does not wrap. The value needs to be manually wrapped by the size of the mmap buffer before accessing the samples.

On SMP-capable platforms, after reading the data_head value, user space should issue an rmb().

data_tail

When the mapping is PROT_WRITE, the data_tail value should be written by user space to reflect the last read data. In this case, the kernel will not overwrite unread data.

data_offset (since Linux 4.1)

Contains the offset of the location in the mmap buffer where perf sample data begins.

data_size (since Linux 4.1)

Contains the size of the perf sample region within the mmap buffer.

aux_head, aux_tail, aux_offset, aux_size (since Linux 4.1)

The AUX region allows mmap(2)-ing a separate sample buffer for high-bandwidth data streams (separate from the main perf sample buffer). An example of a high-bandwidth stream is instruction tracing support, as is found in newer Intel processors.

To set up an AUX area, first aux_offset needs to be set with an offset greater than data_offset+data_size and aux_size needs to be set to the desired buffer size. The desired offset and size must be page aligned, and the size must be a power of two. These values are then passed to mmap in order to map the AUX buffer. Pages in the AUX buffer are included as part of the RLIMIT_MEMLOCK resource limit (see setrlimit(2)), and also as part of the perf_event_mlock_kb allowance.

By default, the AUX buffer will be truncated if it will not fit in the available space in the ring buffer. If the AUX buffer is mapped as a read only buffer, then it will operate in ring buffer mode where old data will be overwritten by new. In overwrite mode, it might not be possible to infer where the new data began, and it is the consumer's job to disable measurement while reading to avoid possible data races.

The aux_head and aux_tail ring buffer pointers have the same behavior and ordering rules as the previous described data_head and data_tail.

The following 2^n ring-buffer pages have the layout described below.

If perf_event_attr.sample_id_all is set, then all event types will have the sample_type selected fields related to where/when (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) described in PERF_RECORD_SAMPLE below, it will be stashed just after the perf_event_header and the fields already present for the existing fields, that is, at the end of the payload. This allows a newer perf.data file to be supported by older perf tools, with the new optional fields being ignored.

The mmap values start with a header:

struct perf_event_header {
    __u32   type;
    __u16   misc;
    __u16   size;
};

Below, we describe the perf_event_header fields in more detail. For ease of reading, the fields with shorter descriptions are presented first.

size

This indicates the size of the record.

misc

The misc field contains additional information about the sample.

The CPU mode can be determined from this value by masking with PERF_RECORD_MISC_CPUMODE_MASK and looking for one of the following (note these are not bit masks, only one can be set at a time):

PERF_RECORD_MISC_CPUMODE_UNKNOWN

Unknown CPU mode.

PERF_RECORD_MISC_KERNEL

Sample happened in the kernel.

PERF_RECORD_MISC_USER

Sample happened in user code.

PERF_RECORD_MISC_HYPERVISOR

Sample happened in the hypervisor.

PERF_RECORD_MISC_GUEST_KERNEL (since Linux 2.6.35)

Sample happened in the guest kernel.

PERF_RECORD_MISC_GUEST_USER (since Linux 2.6.35)

Sample happened in guest user code.

Since the following three statuses are generated by different record types, they alias to the same bit:

PERF_RECORD_MISC_MMAP_DATA (since Linux 3.10)

This is set when the mapping is not executable; otherwise the mapping is executable.

PERF_RECORD_MISC_COMM_EXEC (since Linux 3.16)

This is set for a PERF_RECORD_COMM record on kernels more recent than Linux 3.16 if a process name change was caused by an exec(2) system call.

PERF_RECORD_MISC_SWITCH_OUT (since Linux 4.3)

When a PERF_RECORD_SWITCH or PERF_RECORD_SWITCH_CPU_WIDE record is generated, this bit indicates that the context switch is away from the current process (instead of into the current process).

In addition, the following bits can be set:

PERF_RECORD_MISC_EXACT_IP

This indicates that the content of PERF_SAMPLE_IP points to the actual instruction that triggered the event. See also perf_event_attr.precise_ip.

PERF_RECORD_MISC_EXT_RESERVED (since Linux 2.6.35)

This indicates there is extended data available (currently not used).

PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT

This bit is not set by the kernel. It is reserved for the user-space perf utility to indicate that /proc/i[pid]/maps parsing was taking too long and was stopped, and thus the mmap records may be truncated.

type

The type value is one of the below. The values in the corresponding record (that follows the header) depend on the type selected as shown.

PERF_RECORD_MMAP

The MMAP events record the PROT_EXEC mappings so that we can correlate user-space IPs to code. They have the following structure:

struct {
    struct perf_event_header header;
    u32    pid, tid;
    u64    addr;
    u64    len;
    u64    pgoff;
    char   filename[];
};
pid

is the process ID.

tid

is the thread ID.

addr

is the address of the allocated memory. len is the length of the allocated memory. pgoff is the page offset of the allocated memory. filename is a string describing the backing of the allocated memory.

PERF_RECORD_LOST

This record indicates when events are lost.

struct {
    struct perf_event_header header;
    u64    id;
    u64    lost;
    struct sample_id sample_id;
};
id

is the unique event ID for the samples that were lost.

lost

is the number of events that were lost.

PERF_RECORD_COMM

This record indicates a change in the process name.

struct {
    struct perf_event_header header;
    u32    pid;
    u32    tid;
    char   comm[];
    struct sample_id sample_id;
};
pid

is the process ID.

tid

is the thread ID.

comm

is a string containing the new name of the process.

PERF_RECORD_EXIT

This record indicates a process exit event.

struct {
    struct perf_event_header header;
    u32    pid, ppid;
    u32    tid, ptid;
    u64    time;
    struct sample_id sample_id;
};
PERF_RECORD_THROTTLE, PERF_RECORD_UNTHROTTLE

This record indicates a throttle/unthrottle event.

struct {
    struct perf_event_header header;
    u64    time;
    u64    id;
    u64    stream_id;
    struct sample_id sample_id;
};
PERF_RECORD_FORK

This record indicates a fork event.

struct {
    struct perf_event_header header;
    u32    pid, ppid;
    u32    tid, ptid;
    u64    time;
    struct sample_id sample_id;
};
PERF_RECORD_READ

This record indicates a read event.

struct {
    struct perf_event_header header;
    u32    pid, tid;
    struct read_format values;
    struct sample_id sample_id;
};
PERF_RECORD_SAMPLE

This record indicates a sample.

struct {
    struct perf_event_header header;
    u64    sample_id;   /* if PERF_SAMPLE_IDENTIFIER */
    u64    ip;          /* if PERF_SAMPLE_IP */
    u32    pid, tid;    /* if PERF_SAMPLE_TID */
    u64    time;        /* if PERF_SAMPLE_TIME */
    u64    addr;        /* if PERF_SAMPLE_ADDR */
    u64    id;          /* if PERF_SAMPLE_ID */
    u64    stream_id;   /* if PERF_SAMPLE_STREAM_ID */
    u32    cpu, res;    /* if PERF_SAMPLE_CPU */
    u64    period;      /* if PERF_SAMPLE_PERIOD */
    struct read_format v;
                        /* if PERF_SAMPLE_READ */
    u64    nr;          /* if PERF_SAMPLE_CALLCHAIN */
    u64    ips[nr];     /* if PERF_SAMPLE_CALLCHAIN */
    u32    size;        /* if PERF_SAMPLE_RAW */
    char   data[size];  /* if PERF_SAMPLE_RAW */
    u64    bnr;         /* if PERF_SAMPLE_BRANCH_STACK */
    struct perf_branch_entry lbr[bnr];
                        /* if PERF_SAMPLE_BRANCH_STACK */
    u64    abi;         /* if PERF_SAMPLE_REGS_USER */
    u64    regs[weight(mask)];
                        /* if PERF_SAMPLE_REGS_USER */
    u64    size;        /* if PERF_SAMPLE_STACK_USER */
    char   data[size];  /* if PERF_SAMPLE_STACK_USER */
    u64    dyn_size;    /* if PERF_SAMPLE_STACK_USER &&
                           size != 0 */
    u64    weight;      /* if PERF_SAMPLE_WEIGHT */
    u64    data_src;    /* if PERF_SAMPLE_DATA_SRC */
    u64    transaction; /* if PERF_SAMPLE_TRANSACTION */
    u64    abi;         /* if PERF_SAMPLE_REGS_INTR */
    u64    regs[weight(mask)];
                        /* if PERF_SAMPLE_REGS_INTR */
    u64    phys_addr;   /* if PERF_SAMPLE_PHYS_ADDR */
    u64    cgroup;      /* if PERF_SAMPLE_CGROUP */
};
sample_id

If PERF_SAMPLE_IDENTIFIER is enabled, a 64-bit unique ID is included. This is a duplication of the PERF_SAMPLE_ID id value, but included at the beginning of the sample so parsers can easily obtain the value.

ip

If PERF_SAMPLE_IP is enabled, then a 64-bit instruction pointer value is included.

pid, tid

If PERF_SAMPLE_TID is enabled, then a 32-bit process ID and 32-bit thread ID are included.

time

If PERF_SAMPLE_TIME is enabled, then a 64-bit timestamp is included. This is obtained via local_clock() which is a hardware timestamp if available and the jiffies value if not.

addr

If PERF_SAMPLE_ADDR is enabled, then a 64-bit address is included. This is usually the address of a tracepoint, breakpoint, or software event; otherwise the value is 0.

id

If PERF_SAMPLE_ID is enabled, a 64-bit unique ID is included. If the event is a member of an event group, the group leader ID is returned. This ID is the same as the one returned by PERF_FORMAT_ID.

stream_id

If PERF_SAMPLE_STREAM_ID is enabled, a 64-bit unique ID is included. Unlike PERF_SAMPLE_ID the actual ID is returned, not the group leader. This ID is the same as the one returned by PERF_FORMAT_ID.

cpu, res

If PERF_SAMPLE_CPU is enabled, this is a 32-bit value indicating which CPU was being used, in addition to a reserved (unused) 32-bit value.

period

If PERF_SAMPLE_PERIOD is enabled, a 64-bit value indicating the current sampling period is written.

v

If PERF_SAMPLE_READ is enabled, a structure of type read_format is included which has values for all events in the event group. The values included depend on the read_format value used at perf_event_open() time.

nr, ips[nr]

If PERF_SAMPLE_CALLCHAIN is enabled, then a 64-bit number is included which indicates how many following 64-bit instruction pointers will follow. This is the current callchain.

size, data[size]

If PERF_SAMPLE_RAW is enabled, then a 32-bit value indicating size is included followed by an array of 8-bit values of length size. The values are padded with 0 to have 64-bit alignment.

This RAW record data is opaque with respect to the ABI. The ABI doesn't make any promises with respect to the stability of its content, it may vary depending on event, hardware, and kernel version.

bnr, lbr[bnr]

If PERF_SAMPLE_BRANCH_STACK is enabled, then a 64-bit value indicating the number of records is included, followed by bnr perf_branch_entry structures which each include the fields:

from

This indicates the source instruction (may not be a branch).

to

The branch target.

mispred

The branch target was mispredicted.

predicted

The branch target was predicted.

in_tx (since Linux 3.11)

The branch was in a transactional memory transaction.

abort (since Linux 3.11)

The branch was in an aborted transactional memory transaction.

cycles (since Linux 4.3)

This reports the number of cycles elapsed since the previous branch stack update.

The entries are from most to least recent, so the first entry has the most recent branch.

Support for mispred, predicted, and cycles is optional; if not supported, those values will be 0.

The type of branches recorded is specified by the branch_sample_type field.

abi, regs[weight(mask)]

If PERF_SAMPLE_REGS_USER is enabled, then the user CPU registers are recorded.

The abi field is one of PERF_SAMPLE_REGS_ABI_NONE, PERF_SAMPLE_REGS_ABI_32, or PERF_SAMPLE_REGS_ABI_64.

The regs field is an array of the CPU registers that were specified by the sample_regs_user attr field. The number of values is the number of bits set in the sample_regs_user bit mask.

size, data[size], dyn_size

If PERF_SAMPLE_STACK_USER is enabled, then the user stack is recorded. This can be used to generate stack backtraces. size is the size requested by the user in sample_stack_user or else the maximum record size. data is the stack data (a raw dump of the memory pointed to by the stack pointer at the time of sampling). dyn_size is the amount of data actually dumped (can be less than size). Note that dyn_size is omitted if size is 0.

weight

If PERF_SAMPLE_WEIGHT is enabled, then a 64-bit value provided by the hardware is recorded that indicates how costly the event was. This allows expensive events to stand out more clearly in profiles.

data_src

If PERF_SAMPLE_DATA_SRC is enabled, then a 64-bit value is recorded that is made up of the following fields:

mem_op

Type of opcode, a bitwise combination of:

PERF_MEM_OP_NA

Not available

PERF_MEM_OP_LOAD

Load instruction

PERF_MEM_OP_STORE

Store instruction

PERF_MEM_OP_PFETCH

Prefetch

PERF_MEM_OP_EXEC

Executable code

mem_lvl

Memory hierarchy level hit or miss, a bitwise combination of the following, shifted left by PERF_MEM_LVL_SHIFT:

PERF_MEM_LVL_NA

Not available

PERF_MEM_LVL_HIT

Hit

PERF_MEM_LVL_MISS

Miss

PERF_MEM_LVL_L1

Level 1 cache

PERF_MEM_LVL_LFB

Line fill buffer

PERF_MEM_LVL_L2

Level 2 cache

PERF_MEM_LVL_L3

Level 3 cache

PERF_MEM_LVL_LOC_RAM

Local DRAM

PERF_MEM_LVL_REM_RAM1

Remote DRAM 1 hop

PERF_MEM_LVL_REM_RAM2

Remote DRAM 2 hops

PERF_MEM_LVL_REM_CCE1

Remote cache 1 hop

PERF_MEM_LVL_REM_CCE2

Remote cache 2 hops

PERF_MEM_LVL_IO

I/O memory

PERF_MEM_LVL_UNC

Uncached memory

mem_snoop

Snoop mode, a bitwise combination of the following, shifted left by PERF_MEM_SNOOP_SHIFT:

PERF_MEM_SNOOP_NA

Not available

PERF_MEM_SNOOP_NONE

No snoop

PERF_MEM_SNOOP_HIT

Snoop hit

PERF_MEM_SNOOP_MISS

Snoop miss

PERF_MEM_SNOOP_HITM

Snoop hit modified

mem_lock

Lock instruction, a bitwise combination of the following, shifted left by PERF_MEM_LOCK_SHIFT:

PERF_MEM_LOCK_NA

Not available

PERF_MEM_LOCK_LOCKED

Locked transaction

mem_dtlb

TLB access hit or miss, a bitwise combination of the following, shifted left by PERF_MEM_TLB_SHIFT:

PERF_MEM_TLB_NA

Not available

PERF_MEM_TLB_HIT

Hit

PERF_MEM_TLB_MISS

Miss

PERF_MEM_TLB_L1

Level 1 TLB

PERF_MEM_TLB_L2

Level 2 TLB

PERF_MEM_TLB_WK

Hardware walker

PERF_MEM_TLB_OS

OS fault handler

transaction

If the PERF_SAMPLE_TRANSACTION flag is set, then a 64-bit field is recorded describing the sources of any transactional memory aborts.

The field is a bitwise combination of the following values:

PERF_TXN_ELISION

Abort from an elision type transaction (Intel-CPU-specific).

PERF_TXN_TRANSACTION

Abort from a generic transaction.

PERF_TXN_SYNC

Synchronous abort (related to the reported instruction).

PERF_TXN_ASYNC

Asynchronous abort (not related to the reported instruction).

PERF_TXN_RETRY

Retryable abort (retrying the transaction may have succeeded).

PERF_TXN_CONFLICT

Abort due to memory conflicts with other threads.

PERF_TXN_CAPACITY_WRITE

Abort due to write capacity overflow.

PERF_TXN_CAPACITY_READ

Abort due to read capacity overflow.

In addition, a user-specified abort code can be obtained from the high 32 bits of the field by shifting right by PERF_TXN_ABORT_SHIFT and masking with the value PERF_TXN_ABORT_MASK.

abi, regs[weight(mask)]

If PERF_SAMPLE_REGS_INTR is enabled, then the user CPU registers are recorded.

The abi field is one of PERF_SAMPLE_REGS_ABI_NONE, PERF_SAMPLE_REGS_ABI_32, or PERF_SAMPLE_REGS_ABI_64.

The regs field is an array of the CPU registers that were specified by the sample_regs_intr attr field. The number of values is the number of bits set in the sample_regs_intr bit mask.

phys_addr

If the PERF_SAMPLE_PHYS_ADDR flag is set, then the 64-bit physical address is recorded.

cgroup

If the PERF_SAMPLE_CGROUP flag is set, then the 64-bit cgroup ID (for the perf_event subsystem) is recorded. To get the pathname of the cgroup, the ID should match to one in a PERF_RECORD_CGROUP .

PERF_RECORD_MMAP2

This record includes extended information on mmap(2) calls returning executable mappings. The format is similar to that of the PERF_RECORD_MMAP record, but includes extra values that allow uniquely identifying shared mappings.

struct {
    struct perf_event_header header;
    u32    pid;
    u32    tid;
    u64    addr;
    u64    len;
    u64    pgoff;
    u32    maj;
    u32    min;
    u64    ino;
    u64    ino_generation;
    u32    prot;
    u32    flags;
    char   filename[];
    struct sample_id sample_id;
};
pid

is the process ID.

tid

is the thread ID.

addr

is the address of the allocated memory.

len

is the length of the allocated memory.

pgoff

is the page offset of the allocated memory.

maj

is the major ID of the underlying device.

min

is the minor ID of the underlying device.

ino

is the inode number.

ino_generation

is the inode generation.

prot

is the protection information.

flags

is the flags information.

filename

is a string describing the backing of the allocated memory.

PERF_RECORD_AUX (since Linux 4.1)

This record reports that new data is available in the separate AUX buffer region.

struct {
    struct perf_event_header header;
    u64    aux_offset;
    u64    aux_size;
    u64    flags;
    struct sample_id sample_id;
};
aux_offset

offset in the AUX mmap region where the new data begins.

aux_size

size of the data made available.

flags

describes the AUX update.

PERF_AUX_FLAG_TRUNCATED

if set, then the data returned was truncated to fit the available buffer size.

PERF_AUX_FLAG_OVERWRITE

if set, then the data returned has overwritten previous data.

PERF_RECORD_ITRACE_START (since Linux 4.1)

This record indicates which process has initiated an instruction trace event, allowing tools to properly correlate the instruction addresses in the AUX buffer with the proper executable.

struct {
    struct perf_event_header header;
    u32    pid;
    u32    tid;
};
pid

process ID of the thread starting an instruction trace.

tid

thread ID of the thread starting an instruction trace.

PERF_RECORD_LOST_SAMPLES (since Linux 4.2)

When using hardware sampling (such as Intel PEBS) this record indicates some number of samples that may have been lost.

struct {
    struct perf_event_header header;
    u64    lost;
    struct sample_id sample_id;
};
lost

the number of potentially lost samples.

PERF_RECORD_SWITCH (since Linux 4.3)

This record indicates a context switch has happened. The PERF_RECORD_MISC_SWITCH_OUT bit in the misc field indicates whether it was a context switch into or away from the current process.

struct {
    struct perf_event_header header;
    struct sample_id sample_id;
};
PERF_RECORD_SWITCH_CPU_WIDE (since Linux 4.3)

As with PERF_RECORD_SWITCH this record indicates a context switch has happened, but it only occurs when sampling in CPU-wide mode and provides additional information on the process being switched to/from. The PERF_RECORD_MISC_SWITCH_OUT bit in the misc field indicates whether it was a context switch into or away from the current process.

struct {
    struct perf_event_header header;
    u32 next_prev_pid;
    u32 next_prev_tid;
    struct sample_id sample_id;
};
next_prev_pid

The process ID of the previous (if switching in) or next (if switching out) process on the CPU.

next_prev_tid

The thread ID of the previous (if switching in) or next (if switching out) thread on the CPU.

PERF_RECORD_NAMESPACES (since Linux 4.11)

This record includes various namespace information of a process.

struct {
    struct perf_event_header header;
    u32    pid;
    u32    tid;
    u64    nr_namespaces;
    struct { u64 dev, inode } [nr_namespaces];
    struct sample_id sample_id;
};
pid

is the process ID

tid

is the thread ID

nr_namespace

is the number of namespaces in this record

Each namespace has dev and inode fields and is recorded in the fixed position like below:

NET_NS_INDEX=0

Network namespace

UTS_NS_INDEX=1

UTS namespace

IPC_NS_INDEX=2

IPC namespace

PID_NS_INDEX=3

PID namespace

USER_NS_INDEX=4

User namespace

MNT_NS_INDEX=5

Mount namespace

CGROUP_NS_INDEX=6

Cgroup namespace

PERF_RECORD_KSYMBOL (since Linux 5.0)

This record indicates kernel symbol register/unregister events.

struct {
    struct perf_event_header header;
    u64    addr;
    u32    len;
    u16    ksym_type;
    u16    flags;
    char   name[];
    struct sample_id sample_id;
};
addr

is the address of the kernel symbol.

len

is the length of the kernel symbol.

ksym_type

is the type of the kernel symbol. Currently the following types are available:

PERF_RECORD_KSYMBOL_TYPE_BPF

The kernel symbol is a BPF function.

flags

If the PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER is set, then this event is for unregistering the kernel symbol.

PERF_RECORD_BPF_EVENT (since Linux 5.0)

This record indicates BPF program is loaded or unloaded.

struct {
    struct perf_event_header header;
    u16 type;
    u16 flags;
    u32 id;
    u8 tag[BPF_TAG_SIZE];
    struct sample_id sample_id;
};
type

is one of the following values:

PERF_BPF_EVENT_PROG_LOAD

A BPF program is loaded

PERF_BPF_EVENT_PROG_UNLOAD

A BPF program is unloaded

id

is the ID of the BPF program.

tag

is the tag of the BPF program. Currently, BPF_TAG_SIZE is defined as 8.

PERF_RECORD_CGROUP (since Linux 5.7)

This record indicates a new cgroup is created and activated.

struct {
    struct perf_event_header header;
    u64    id;
    char   path[];
    struct sample_id sample_id;
};
id

is the cgroup identifier. This can be also retrieved by name_to_handle_at(2) on the cgroup path (as a file handle).

path

is the path of the cgroup from the root.

PERF_RECORD_TEXT_POKE (since Linux 5.8)

This record indicates a change in the kernel text. This includes addition and removal of the text and the corresponding length is zero in this case.

struct {
    struct perf_event_header header;
    u64    addr;
    u16    old_len;
    u16    new_len;
    u8     bytes[];
    struct sample_id sample_id;
};
addr

is the address of the change

old_len

is the old length

new_len

is the new length

bytes

contains old bytes immediately followed by new bytes.

Overflow handling

Events can be set to notify when a threshold is crossed, indicating an overflow. Overflow conditions can be captured by monitoring the event file descriptor with poll(2), select(2), or epoll(7). Alternatively, the overflow events can be captured via sa signal handler, by enabling I/O signaling on the file descriptor; see the discussion of the F_SETOWN and F_SETSIG operations in fcntl(2).

Overflows are generated only by sampling events (sample_period must have a nonzero value).

There are two ways to generate overflow notifications.

The first is to set a wakeup_events or wakeup_watermark value that will trigger if a certain number of samples or bytes have been written to the mmap ring buffer. In this case, POLL_IN is indicated.

The other way is by use of the PERF_EVENT_IOC_REFRESH ioctl. This ioctl adds to a counter that decrements each time the event overflows. When nonzero, POLL_IN is indicated, but once the counter reaches 0 POLL_HUP is indicated and the underlying event is disabled.

Refreshing an event group leader refreshes all siblings and refreshing with a parameter of 0 currently enables infinite refreshes; these behaviors are unsupported and should not be relied on.

Starting with Linux 3.18, POLL_HUP is indicated if the event being monitored is attached to a different process and that process exits.

rdpmc instruction

Starting with Linux 3.4 on x86, you can use the rdpmc instruction to get low-latency reads without having to enter the kernel. Note that using rdpmc is not necessarily faster than other methods for reading event values.

Support for this can be detected with the cap_usr_rdpmc field in the mmap page; documentation on how to calculate event values can be found in that section.

Originally, when rdpmc support was enabled, any process (not just ones with an active perf event) could use the rdpmc instruction to access the counters. Starting with Linux 4.0, rdpmc support is only allowed if an event is currently enabled in a process's context. To restore the old behavior, write the value 2 to /sys/devices/cpu/rdpmc.

perf_event ioctl calls

Various ioctls act on perf_event_open() file descriptors:

PERF_EVENT_IOC_ENABLE

This enables the individual event or event group specified by the file descriptor argument.

If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all events in a group are enabled, even if the event specified is not the group leader (but see BUGS).

PERF_EVENT_IOC_DISABLE

This disables the individual counter or event group specified by the file descriptor argument.

Enabling or disabling the leader of a group enables or disables the entire group; that is, while the group leader is disabled, none of the counters in the group will count. Enabling or disabling a member of a group other than the leader affects only that counter; disabling a non-leader stops that counter from counting but doesn't affect any other counter.

If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all events in a group are disabled, even if the event specified is not the group leader (but see BUGS).

PERF_EVENT_IOC_REFRESH

Non-inherited overflow counters can use this to enable a counter for a number of overflows specified by the argument, after which it is disabled. Subsequent calls of this ioctl add the argument value to the current count. An overflow notification with POLL_IN set will happen on each overflow until the count reaches 0; when that happens a notification with POLL_HUP set is sent and the event is disabled. Using an argument of 0 is considered undefined behavior.

PERF_EVENT_IOC_RESET

Reset the event count specified by the file descriptor argument to zero. This resets only the counts; there is no way to reset the multiplexing time_enabled or time_running values.

If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all events in a group are reset, even if the event specified is not the group leader (but see BUGS).

PERF_EVENT_IOC_PERIOD

This updates the overflow period for the event.

Since Linux 3.7 (on ARM) and Linux 3.14 (all other architectures), the new period takes effect immediately. On older kernels, the new period did not take effect until after the next overflow.

The argument is a pointer to a 64-bit value containing the desired new period.

Prior to Linux 2.6.36, this ioctl always failed due to a bug in the kernel.

PERF_EVENT_IOC_SET_OUTPUT

This tells the kernel to report event notifications to the specified file descriptor rather than the default one. The file descriptors must all be on the same CPU.

The argument specifies the desired file descriptor, or -1 if output should be ignored.

PERF_EVENT_IOC_SET_FILTER (since Linux 2.6.33)

This adds an ftrace filter to this event.

The argument is a pointer to the desired ftrace filter.

PERF_EVENT_IOC_ID (since Linux 3.12)

This returns the event ID value for the given event file descriptor.

The argument is a pointer to a 64-bit unsigned integer to hold the result.

PERF_EVENT_IOC_SET_BPF (since Linux 4.1)

This allows attaching a Berkeley Packet Filter (BPF) program to an existing kprobe tracepoint event. You need CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN privileges to use this ioctl.

The argument is a BPF program file descriptor that was created by a previous bpf(2) system call.

PERF_EVENT_IOC_PAUSE_OUTPUT (since Linux 4.7)

This allows pausing and resuming the event's ring-buffer. A paused ring-buffer does not prevent generation of samples, but simply discards them. The discarded samples are considered lost, and cause a PERF_RECORD_LOST sample to be generated when possible. An overflow signal may still be triggered by the discarded sample even though the ring-buffer remains empty.

The argument is an unsigned 32-bit integer. A nonzero value pauses the ring-buffer, while a zero value resumes the ring-buffer.

PERF_EVENT_MODIFY_ATTRIBUTES (since Linux 4.17)

This allows modifying an existing event without the overhead of closing and reopening a new event. Currently this is supported only for breakpoint events.

The argument is a pointer to a perf_event_attr structure containing the updated event settings.

PERF_EVENT_IOC_QUERY_BPF (since Linux 4.16)

This allows querying which Berkeley Packet Filter (BPF) programs are attached to an existing kprobe tracepoint. You can only attach one BPF program per event, but you can have multiple events attached to a tracepoint. Querying this value on one tracepoint event returns the ID of all BPF programs in all events attached to the tracepoint. You need CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN privileges to use this ioctl.

The argument is a pointer to a structure

struct perf_event_query_bpf {
    __u32    ids_len;
    __u32    prog_cnt;
    __u32    ids[0];
};

The ids_len field indicates the number of ids that can fit in the provided ids array. The prog_cnt value is filled in by the kernel with the number of attached BPF programs. The ids array is filled with the ID of each attached BPF program. If there are more programs than will fit in the array, then the kernel will return ENOSPC and ids_len will indicate the number of program IDs that were successfully copied.

Using prctl(2)

A process can enable or disable all currently open event groups using the prctl(2) PR_TASK_PERF_EVENTS_ENABLE and PR_TASK_PERF_EVENTS_DISABLE operations. This applies only to events created locally by the calling process. This does not apply to events created by other processes attached to the calling process or inherited events from a parent process. Only group leaders are enabled and disabled, not any other members of the groups.

perf_event related configuration files

Files in /proc/sys/kernel/

/proc/sys/kernel/perf_event_paranoid

The perf_event_paranoid file can be set to restrict access to the performance counters.

  1. allow only user-space measurements (default since Linux 4.6).

  2. allow both kernel and user measurements (default before Linux 4.6).

  3. allow access to CPU-specific data but not raw tracepoint samples.

  • no restrictions.

The existence of the perf_event_paranoid file is the official method for determining if a kernel supports perf_event_open().

/proc/sys/kernel/perf_event_max_sample_rate

This sets the maximum sample rate. Setting this too high can allow users to sample at a rate that impacts overall machine performance and potentially lock up the machine. The default value is 100000 (samples per second).

/proc/sys/kernel/perf_event_max_stack

This file sets the maximum depth of stack frame entries reported when generating a call trace.

/proc/sys/kernel/perf_event_mlock_kb

Maximum number of pages an unprivileged user can mlock(2). The default is 516 (kB).

Files in /sys/bus/event_source/devices/

Since Linux 2.6.34, the kernel supports having multiple PMUs available for monitoring. Information on how to program these PMUs can be found under /sys/bus/event_source/devices/. Each subdirectory corresponds to a different PMU.

/sys/bus/event_source/devices/*/type (since Linux 2.6.38)

This contains an integer that can be used in the type field of perf_event_attr to indicate that you wish to use this PMU.

/sys/bus/event_source/devices/cpu/rdpmc (since Linux 3.4)

If this file is 1, then direct user-space access to the performance counter registers is allowed via the rdpmc instruction. This can be disabled by echoing 0 to the file.

As of Linux 4.0 the behavior has changed, so that 1 now means only allow access to processes with active perf events, with 2 indicating the old allow-anyone-access behavior.

/sys/bus/event_source/devices/*/format/ (since Linux 3.4)

This subdirectory contains information on the architecture-specific subfields available for programming the various config fields in the perf_event_attr struct.

The content of each file is the name of the config field, followed by a colon, followed by a series of integer bit ranges separated by commas. For example, the file event may contain the value config1:1,6-10,44 which indicates that event is an attribute that occupies bits 1,6–10, and 44 of perf_event_attr::config1.

/sys/bus/event_source/devices/*/events/ (since Linux 3.4)

This subdirectory contains files with predefined events. The contents are strings describing the event settings expressed in terms of the fields found in the previously mentioned ./format/ directory. These are not necessarily complete lists of all events supported by a PMU, but usually a subset of events deemed useful or interesting.

The content of each file is a list of attribute names separated by commas. Each entry has an optional value (either hex or decimal). If no value is specified, then it is assumed to be a single-bit field with a value of 1. An example entry may look like this: event=0x2,inv,ldlat=3.

/sys/bus/event_source/devices/*/uevent

This file is the standard kernel device interface for injecting hotplug events.

/sys/bus/event_source/devices/*/cpumask (since Linux 3.7)

The cpumask file contains a comma-separated list of integers that indicate a representative CPU number for each socket (package) on the motherboard. This is needed when setting up uncore or northbridge events, as those PMUs present socket-wide events.

RETURN VALUE

perf_event_open() returns the new file descriptor, or -1 if an error occurred (in which case, errno is set appropriately).

ERRORS

The errors returned by perf_event_open() can be inconsistent, and may vary across processor architectures and performance monitoring units.

E2BIG

Returned if the perf_event_attr size value is too small (smaller than PERF_ATTR_SIZE_VER0), too big (larger than the page size), or larger than the kernel supports and the extra bytes are not zero. When E2BIG is returned, the perf_event_attr size field is overwritten by the kernel to be the size of the structure it was expecting.

EACCES

Returned when the requested event requires CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN permissions (or a more permissive perf_event paranoid setting). Some common cases where an unprivileged process may encounter this error: attaching to a process owned by a different user; monitoring all processes on a given CPU (i.e., specifying the pid argument as -1); and not setting exclude_kernel when the paranoid setting requires it.

EBADF

Returned if the group_fd file descriptor is not valid, or, if PERF_FLAG_PID_CGROUP is set, the cgroup file descriptor in pid is not valid.

EBUSY (since Linux 4.1)

Returned if another event already has exclusive access to the PMU.

EFAULT

Returned if the attr pointer points at an invalid memory address.

EINVAL

Returned if the specified event is invalid. There are many possible reasons for this. A not-exhaustive list: sample_freq is higher than the maximum setting; the cpu to monitor does not exist; read_format is out of range; sample_type is out of range; the flags value is out of range; exclusive or pinned set and the event is not a group leader; the event config values are out of range or set reserved bits; the generic event selected is not supported; or there is not enough room to add the selected event.

EINTR

Returned when trying to mix perf and ftrace handling for a uprobe.

EMFILE

Each opened event uses one file descriptor. If a large number of events are opened, the per-process limit on the number of open file descriptors will be reached, and no more events can be created.

ENODEV

Returned when the event involves a feature not supported by the current CPU.

ENOENT

Returned if the type setting is not valid. This error is also returned for some unsupported generic events.

ENOSPC

Prior to Linux 3.3, if there was not enough room for the event, ENOSPC was returned. In Linux 3.3, this was changed to EINVAL. ENOSPC is still returned if you try to add more breakpoint events than supported by the hardware.

ENOSYS

Returned if PERF_SAMPLE_STACK_USER is set in sample_type and it is not supported by hardware.

EOPNOTSUPP

Returned if an event requiring a specific hardware feature is requested but there is no hardware support. This includes requesting low-skid events if not supported, branch tracing if it is not available, sampling if no PMU interrupt is available, and branch stacks for software events.

EOVERFLOW (since Linux 4.8)

Returned if PERF_SAMPLE_CALLCHAIN is requested and sample_max_stack is larger than the maximum specified in /proc/sys/kernel/perf_event_max_stack.

EPERM

Returned on many (but not all) architectures when an unsupported exclude_hv, exclude_idle, exclude_user, or exclude_kernel setting is specified.

It can also happen, as with EACCES, when the requested event requires CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN permissions (or a more permissive perf_event paranoid setting). This includes setting a breakpoint on a kernel address, and (since Linux 3.13) setting a kernel function-trace tracepoint.

ESRCH

Returned if attempting to attach to a process that does not exist.

VERSION

perf_event_open() was introduced in Linux 2.6.31 but was called perf_counter_open(). It was renamed in Linux 2.6.32.

CONFORMING TO

This perf_event_open() system call Linux-specific and should not be used in programs intended to be portable.

NOTES

Glibc does not provide a wrapper for this system call; call it using syscall(2). See the example below.

The official way of knowing if perf_event_open() support is enabled is checking for the existence of the file /proc/sys/kernel/perf_event_paranoid.

CAP_PERFMON capability (since Linux 5.8) provides secure approach to performance monitoring and observability operations in a system according to the principal of least privilege (POSIX IEEE 1003.1e). Accessing system performance monitoring and observability operations using CAP_PERFMON rather than the much more powerful CAP_SYS_ADMIN excludes chances to misuse credentials and makes operations more secure. CAP_SYS_ADMIN usage for secure system performance monitoring and observability is discouraged in favor of the CAP_PERFMON capability.

BUGS

The F_SETOWN_EX option to fcntl(2) is needed to properly get overflow signals in threads. This was introduced in Linux 2.6.32.

Prior to Linux 2.6.33 (at least for x86), the kernel did not check if events could be scheduled together until read time. The same happens on all known kernels if the NMI watchdog is enabled. This means to see if a given set of events works you have to perf_event_open(), start, then read before you know for sure you can get valid measurements.

Prior to Linux 2.6.34, event constraints were not enforced by the kernel. In that case, some events would silently return "0" if the kernel scheduled them in an improper counter slot.

Prior to Linux 2.6.34, there was a bug when multiplexing where the wrong results could be returned.

Kernels from Linux 2.6.35 to Linux 2.6.39 can quickly crash the kernel if "inherit" is enabled and many threads are started.

Prior to Linux 2.6.35, PERF_FORMAT_GROUP did not work with attached processes.

There is a bug in the kernel code between Linux 2.6.36 and Linux 3.0 that ignores the "watermark" field and acts as if a wakeup_event was chosen if the union has a nonzero value in it.

From Linux 2.6.31 to Linux 3.4, the PERF_IOC_FLAG_GROUP ioctl argument was broken and would repeatedly operate on the event specified rather than iterating across all sibling events in a group.

From Linux 3.4 to Linux 3.11, the mmap cap_usr_rdpmc and cap_usr_time bits mapped to the same location. Code should migrate to the new cap_user_rdpmc and cap_user_time fields instead.

Always double-check your results! Various generalized events have had wrong values. For example, retired branches measured the wrong thing on AMD machines until Linux 2.6.35.

EXAMPLES

The following is a short example that measures the total instruction count of a call to printf(3).

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <linux/perf_event.h>
#include <asm/unistd.h>

static long
perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
                int cpu, int group_fd, unsigned long flags)
{
    int ret;

    ret = syscall(__NR_perf_event_open, hw_event, pid, cpu,
                   group_fd, flags);
    return ret;
}

int
main(int argc, char **argv)
{
    struct perf_event_attr pe;
    long long count;
    int fd;

    memset(&pe, 0, sizeof(pe));
    pe.type = PERF_TYPE_HARDWARE;
    pe.size = sizeof(pe);
    pe.config = PERF_COUNT_HW_INSTRUCTIONS;
    pe.disabled = 1;
    pe.exclude_kernel = 1;
    pe.exclude_hv = 1;

    fd = perf_event_open(&pe, 0, -1, -1, 0);
    if (fd == -1) {
       fprintf(stderr, "Error opening leader %llx\n", pe.config);
       exit(EXIT_FAILURE);
    }

    ioctl(fd, PERF_EVENT_IOC_RESET, 0);
    ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

    printf("Measuring instruction count for this printf\n");

    ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
    read(fd, &count, sizeof(count));

    printf("Used %lld instructions\n", count);

    close(fd);
}

SEE ALSO

perf(1), fcntl(2), mmap(2), open(2), prctl(2), read(2)

Documentation/admin-guide/perf-security.rst in the kernel source tree

COLOPHON

This page is part of release 5.10 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.